
recode

recode ii

COLLABORATORS

TITLE :

recode

ACTION NAME DATE SIGNATURE

WRITTEN BY January 29, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

recode iii

Contents

1 recode 1

1.1 recode.guide . 1

1.2 recode.guide/Introduction . 3

1.3 recode.guide/Overview . 4

1.4 recode.guide/Contributing . 4

1.5 recode.guide/Invoking recode . 5

1.6 recode.guide/RFC 1345 charsets . 11

1.7 recode.guide/ISO charsets . 20

1.8 recode.guide/ascii . 21

1.9 recode.guide/ISO 8859-1 charset . 21

1.10 recode.guide/ascii-bs . 22

1.11 recode.guide/flat . 23

1.12 recode.guide/IBM charsets . 23

1.13 recode.guide/ebcdic . 23

1.14 recode.guide/ibmpc . 24

1.15 recode.guide/iconqnx . 25

1.16 recode.guide/CDC charsets . 25

1.17 recode.guide/Display Code . 25

1.18 recode.guide/cdcnos . 26

1.19 recode.guide/bangbang . 26

1.20 recode.guide/Micro charsets . 27

1.21 recode.guide/applemac . 27

1.22 recode.guide/atarist . 28

1.23 recode.guide/nextstep . 28

1.24 recode.guide/Other charsets . 29

1.25 recode.guide/latex . 29

1.26 recode.guide/texte . 29

1.27 recode.guide/Diacritics . 30

1.28 recode.guide/Ending diaeresis . 31

1.29 recode.guide/Internals . 32

1.30 recode.guide/Main flow . 33

1.31 recode.guide/New charsets . 33

recode 1 / 35

Chapter 1

recode

1.1 recode.guide

This file documents the recode command, as of release 3.3. You ←↩
may

find in this document:

Introduction
What is the purpose of this program

Invoking recode
How to use this program

RFC 1345 charsets
Charsets from RFC 1345

ISO charsets
Charsets based on ASCII

IBM charsets
Charsets based on IBM

CDC charsets
Charsets based on CDC

Micro charsets
Non-IBM micro-computer charsets

Other charsets
Some other charsets

Internals
Internal aspects

-- The Detailed Node Listing --

What is the purpose of this program

recode 2 / 35

Overview
Overview of charsets

Contributing
Contributions and bug reports

Charsets based on ASCII

ascii
Usual ASCII

ISO 8859-1 charset
ASCII extended by Latin Alphabets

ascii-bs
ASCII 7-bits, BS to overstrike

flat
ASCII without diacritics nor underline

Charsets based on IBM

ebcdic
EBCDIC codes

ibmpc
IBM’s PC code

iconqnx
Unisys’ ICON code

Charsets based on CDC

Display Code
Control Data’s Display Code

cdcnos
ASCII 6/12 from NOS

bangbang
ASCII "bang bang"

Non-IBM micro-computer charsets

applemac
Apple’s Macintosh code

atarist
Atari ST code

nextstep
NeXT international code

recode 3 / 35

Some other charsets

latex
ASCII with LaTeX codes

texte
ASCII with easy French conventions

ASCII with easy French conventions

Diacritics
Diacritics

Ending diaeresis
List of words ending with diaeresis

Internal aspects

Main flow
Overall organization

New charsets
Adding new charsets

1.2 recode.guide/Introduction

What is the purpose of this program

This recode program has the purpose of converting files between
various character sets and usages. When exact transliterations are not
possible, as it is often the case, the program may get rid of the
offending characters or fall back on approximations.

Let us coin the term charset to represent, without distinction, a
character set "per se" or a particular usage of a character set. This
program recognizes or produces around 150 such charsets. Since it can
convert each charset to almost any other one, many thousands of
different conversions are possible.

This tool pays special attention to superimposition of diacritics for
French representation. This orientation is mostly historical, it does
not impair the usefulness, generality or extensibility of the program.

Overview
Overview of charsets

Contributing

recode 4 / 35

Contributions and bug reports

1.3 recode.guide/Overview

Overview of charsets
====================

Recoding is currently possible between most of the charsets
described in RFC 1435. See

RFC 1345 charsets
.

Recode also handles some charsets in more specialized ways. These
are:

* usual 7-bit ASCII: without any diacritics, or else: using
backspace for overstriking; Unisys’ ICON convention; TeX/LaTeX
coding; easy French conventions for electronic mail;

* 8-bit extensions to ASCII: ISO Latin-1, Atari ST code, IBM’s code
for the PC, Apple’s code for the Macintosh, NeXTSTEP code;

* 6-bit escaped ASCII based on CDC display code: 6/12 code from NOS;
bang-bang code from Universit’e de Montr’eal;

* non-ASCII codes: three flavors of EBCDIC.

The recent introduction of RFC 1345 in GNU recode has brought with
it a few charsets having the functionnality of older ones, but yet
being different in subtle ways. The effects have not been fully
investigated yet, so for now, clashes are avoided, the old and new
charsets are kept well separate. For example, wizards would be
interested in comparing the output of these two commands:

recode -vh ibmpc:applemac
recode -vh ibm437:macintosh

The first command uses only charsets prior to RFC 1345 introduction.
Both methods give different recodings, the first also properly recodes
end of lines. These differences are annoying, the fuziness will have to
be explained and settle down one day.

1.4 recode.guide/Contributing

Contributions and bug reports
=============================

Even being the recode author and current maintainer, I am no

recode 5 / 35

specialist in charset standards. I only made recode along the years to
solve my own needs, but felt it was extendable for the needs of others.
Some GNU people liked the program structure and suggested to make it
more widely available. I rely on GNU users judgement for what is best
to be done next.

Properly protecting GNU recode about possible copyright fights is a
pain for me and for contributors, but we cannot avoid addressing the
issue in the long run. Besides, the Free Software Foundation, which
mandates the GNU project, is very sensible to this matter. GNU
standards require that I be cautious before looking at copyrighted code.
The safest and simplest way for me is to gather ideas and reprogram them
anew, even if this might slow me down considerably. For contributions
going beyond a few lines of code here and there, the FSF definitely
requires employer disclaimers and copyright assignments.

Many users contributed to GNU recode already, I am grateful to them
for their interest and involvement. Some suggestions can be integrated
quickly while some others have to be delayed, I have to draw a line
somewhere when time comes to make a new release, about what would go in
it and what would go in the next. Also, when you contribute something
to recode, please explain what it is about. Do not take for granted
that I know those charsets which are familiar to you. Your
explanations could well find their way into this documentation, too.

Mail suggestions, documentation errors and bug reports to
bug-gnu-utils@prep.ai.mit.edu or, if you prefer, directly to Francois
Pinard pinard@iro.umontreal.ca. Do not be afraid to report details,
because this program is the mere aggregation of hundreds of details.

1.5 recode.guide/Invoking recode

How to use this program

The general format of the program call is one of:

recode [option]... [charset]
recode [option]... [before]:[after] [file]...

The second form is the common case. Each file file will be read
assuming it is coded with charset before, it will be recoded over
itself so to use the charset after. If there is no such file, the
program rather acts as a filter and recode standard input to standard
output.

The available options are:

-C
-copyright

Given this option, all other parameters and options are ignored.
The program prints briefly the Copyright and copying conditions.
See the file COPYING in the distribution for full statement of the
Copyright and copying conditions.

recode 6 / 35

-a
-auto-check

In this special mode, recode ignore arguments and most options.
It diagnostics itself by analysing connectivity of the various
charsets, reporting on standard output, then it exits without
recoding any file.

For each possible pair of different charsets, it prints on standard
output how many single steps are needed for achieving the recoding
and how many can be saved by step merging. If a recoding cannot
be done, the word UNACHIEVABLE is printed instead. However, this
special line is completely suppressed if option -x specified some
charset to ignore.

The option -hname affects the resulting output, because there are
more merging rules when this option is in effect. Other options
affect the result: -d, -g and, notably, -s.

There was a time, in GNU recode development, when this option was
reasonnably interesting. With the greater number of handled
charsets, it became very slow, while generating a great deal of
output. It can be made slightly more practical with -x., which
effectively disable most RFC 1345 charsets from the report.

-c
-colons

With texte Easy French conventions, use the column : instead of
the double-quote " for marking diaeresis. See

texte
.

-d
-diacritics

While converting to or from latex charset, limit conversion to
diacritics only. This is particularily useful when people write
what would be valid TeX or LaTeX files, if only they were using TeX
macros for applying diacritics instead of using the diacriticized
characters directly from the underlying character set.

While converting to latex charset, this option assumes that all
special characters to TeX or LaTeX are properly escaped already;
backslashes are also transmitted litterally. While converting the
other way, this option prevents all attempts at recognizing TeX or
LaTeX escaped representation of single characters of the other
charset. See

latex
.

-f
-force

This option will is necessary for a file to be transformed
irreversibly, regardless of the fact a file is recoded over itself
or produced on standard output. Beware that in this recode
version, this option is only recognized, but otherwise ignored: if
it is found that the recoding is not fully reversible, the file
replacement is still unconditionnaly done.

recode 7 / 35

Even if GNU recode tries hard at keeping the recodings reversible,
it cannot make any promise! In particular, consider:

* Some transformations are known to be fully reversible for all
inputs: recode seeks for them (also see option -s). This is
not true for all transformations, however.

* Usually, reversibility depends on file contents and cannot be
told beforehand. Further, reversibility is never absolute
accross successive versions of the program. Even correcting
a small bug in a mapping could induce slight discrepancies
later: please keep only reasonnable expectations about
reverse recodings.

* Reversibility is easily lost by merging. This is best
explained through an example. If you reversibly recode a
file from charset A to charset B, then you reversibly recode
the result from charset B to charset C, you cannot expect to
recover the original file by merely recoding from charset C
directly to charset A. You will instead have to recode from
charset C back to charset B, and only then from charset B to
charset A.

* Faulty files create a particular problem. Consider an
example, recoding from ibmpc to latin1. End of lines are
represented as \r\n is ibmpc and as \n in latin1. There is
no way by which a faulty ibmpc file containing a \n not
preceeded by \r be translated into a latin1 file, and then
back.

* There is another difficulty arising from code equivalences.
For example, in a latex charset file, the string \^\i{} could
be recoded back and forth though another charset and become
\^{\i}. Even if the resulting file is equivalent to the
original one, it is not identical.

-g
-graphics

This option is only meaningful while getting out of the ibmpc
charset. In this charset, characters 176 to 223 are used for
constructing rulers and boxes, using simple or double horizontal or
vertical lines. This option forces the automatic selection of
ASCII characters for approximating these rulers and boxes, at cost
of making the transformation irreversible.

-h[name]
-header[=name]

Instead of recoding files, recode writes a C source file on
standard output and exits. This source is meant to be included in
a regular C program: its purpose is to declare and initialize an
array, named name, which represents the requested recoding. If
name is not specified, then it defaults to before_to_after, where
before is the starting charset and after is the goal charset.

Even if recode tries its best, this option does not always succeed
in producing the requested C table. It will however, provided the

recode 8 / 35

recoding can be internally represented by only one step after the
optimization phase, and if this merged step conveys a one-to-one
or a one-to-many explicit table. But this is all fairly
technical. Better try and see!

Beware that other options might affect the produced C tables,
these are: -d, -g and, particularily, -s.

-i
-sequence=files

When the recoding requires a combination of two or more elementary
recoding steps, this option forces many passes over the data, using
intermediate files between passes. This is the default behaviour
when files are recoded over themselves. If this option is
selected in filter mode, that is, when the program reads standard
input and writes standard output, it might take longer for
programs further down the pipe chain to start receiving some
recoded data.

-l[format]
-list[=format]

This option asks for information about all charsets, or about one
particular charset. No file will be recoded.

If there is no non-option arguments, recode ignores the format
value of the option, it writes a sorted list of charset names on
standard output, one per line. When a charset name have aliases
or synonyms, they follow the true charset name on its line,
presented in lexicographical order from left to right. This list
is over one hundred lines. It is best used with grep, as in:

recode -l | grep greek

There might be one non-option argument, in which case it is
interpreted as a charset name, possibly abbreviated to any non
ambiguous prefix. This particular usage of the -l option is
obeyed only for charsets having an RFC 1345 style internal
description. Even if most charsets have this property, some do
not, then option -l cannot be used to detail these particular
charsets. For knowing if a particular charset can be listed this
way, you should merely try and see if this works. The format
value of the option can be any of:

decimal
This format asks for the production on standard output of a
concise tabular display of the charset, in which character
code values are expressed in decimal.

octal
This format uses octal instead of decimal in the concise
tabular display of the charset.

hexadecimal
This format uses hexadecimal instead of decimal in the
concise tabular display of the charset.

full

recode 9 / 35

This format requests an extensive display of the charset on
standard output, using one line per character showing its
decimal, hexadecimal and octal code values, and also a
descriptive comment which is indeed the 10646 character name.

When option -l is used together with a charset argument, the
format defaults to decimal.

-o
-sequence=popen

When the recoding requires a combination of two or more elementary
recoding steps, this option forces the creation of a chain of
program instances initiated through the popen(3) library call, all
operating in parallel. In filter mode, at cost of some overhead,
recoded data will be available soon after the program starts, even
if many elementary recoding steps are required.

If, at installation time, the popen(3) call is said to be
unavailable, selecting option -o is equivalent to selecting option
-i.

-p
-sequence=pipe

When the recoding requires a combination of two or more elementary
recoding steps, this option forces the program to fork itself into
a few copies interconnected with pipes, using the pipe(2) system
call. All copies of the program operate in parallel. This method
is similar to the method used through option -o, but is slightly
more efficient. This is the default behaviour in filter mode. If
this option is used when files are recoded over themselves, this
should save some disk space, at cost of more system overhead.

If, at installation time, the pipe(2) call is said to be
unavailable, selecting option -p is equivalent to selecting option
-o. If both pipe(2) and popen(3) are unavailable, selecting
option -p is equivalent to selecting option -i.

-s
-strict

By using this option, the user requests that recode be very strict
while recoding a file, merely loosing in the transformation any
character which is not explicitely mapped from a charset to
another. This option renders the recoding less likely reversible,
so it also implies option -f.

When this option is not used, recode automatically tries to fill
mappings with inventend correspondances, making them fully
reversible in many instances. This filling is not made at random:
the algorithm tries to stick to the identity mapping and, when not
possible, prefer small permutation cycles. This means that, by
default, recode may sometimes produce funny characters, however
these are quite helpful when one changes his/her mind and wants to
revert to the prior recoding.

-t
-touch

The touch option is meaningful only when files are recoded over

recode 10 / 35

themselves. Without it, the timestamps associated with files are
preserved, to reflect the fact that changing the code of a file
does not really alter its informational contents. When the user
wants the recoded files to be timestamped at the recoding time,
this option inhibits the automatic protection of the timestamps.

-v
-verbose

Before doing any recoding, the program will first print on stderr
the list of all intermediate charsets planned for recoding,
starting with the before charset and ending with the after charset.
It also prints an indication of the recoding quality, as one of
the word reversible, one to one, one to many, many to one or many
to many.

This information will appear once or twice. It is shown a second
time only when the optimization and step merging phase succeeds in
creating a new single step.

This option also has a second effect. The program will print on
stderr one message per file recoded, so to let the user informed
of the progress of its command.

An easy way to know beforehand the sequence or quality of a
recoding is by using the command such as:

recode -v before:after < /dev/null

using the fact that, so far in recode, an empty input file
produces an empty output file.

-x=charset
-ignore=charset

This option tells the program to ignore any recoding path through
the specified charset, so disabling any single step using this
charset as a start or end point. This may be used when the user
wants to force recode in using an alternate recoding path.

charset may be abbreviated to any unambiguous prefix. For
convenience, the value . is an alias for RFC 1345, so the option
-x. effectively disables all RFC 1345 tables at once.

-help
The program merely prints a page of help on standard output, and
exits without doing any recoding.

-version
The program merely prints its version numbers on standard output,
and exits without doing anything else.

The before:after argument specifies the start charset and the goal
charset. The allowable values for before or after are described in the
remainder of this document. Charsets may have predefined alternate
names, or aliases, which are equally acceptable.

In the before:after argument only, a backslash may be used to quote
the next character of a charset name. This might be useful for

recode 11 / 35

preventing a colon to be mistakenly interpreted as the separator between
before and after. Rather, the colon could be omitted, because while
recognizing a charset name or alias, GNU recode ignores all characters
besides letters and digits. There is also no distinction between upper
and lower case. Charset names or aliases may always be abbreviated to
any unambiguous prefix.

One or both of the before or after keywords may be omitted, but the
colon which separates them cannot. An omitted keyword implies the
usual or default code in usage on the system where this program is
installed. Usually, this default code is latin1 for UNIX systems or
ibmpc for MS-DOS machines.

1.6 recode.guide/RFC 1345 charsets

Charsets from RFC 1345

In the GNU recode distribution, there is a copy of RFC 1345:

"Character Mnemonics & Character Sets", K. Simonsen, Request for
Comments no. 1345, Network Working Group, June 1992.

This document is also available by anonymous ftp at nic.ddn.mil in
directory rfc as file rfc1345.txt. This report defines many character
mnemonics and character sets.

GNU recode implements most of RFC 1345, however:

1. It does not recognize 16-bits charsets: GB_2312-80,
JIS_C6226-1978, JIS_C6226-1983, JIS_X0212-1990 and
KS_C_5601-1987.

2. It does not recognize those charsets which combine two characters
for representing a third: ANSI_X3.110-1983, ISO_6937-2-add,
T.101-G2, T.61-8bit, iso-ir-90 and videotex-suppl.

3. It interprets the charset isoir91 as NATS-DANO (alias iso-ir-9-1,
not as JIS_C6229-1984-a (alias iso-ir-91). So better avoid using
these two alias names.

4. It interprets the charset isoir92 as NATS-DANO-ADD (alias
iso-ir-9-2, not as JIS_C6229-1984-b (alias iso-ir-92). So better
avoid using these two alias names.

5. It ignores all about code overloading, but still processes
correctly the remainder of dk-us and us-dk.

Keld Simonsen keld@dkuug.dk did most of RFC 1345 himself, with some
funding from Danish Standards and Nordic standards (INSTA) project. He
also did the character set design work, with substantial input from
Olle Jaernefors. Keld typed in almost all of the tables, some have been

recode 12 / 35

contributed. A number of people have checked the tables in various
ways. The RFC lists a number of people who helped.

ANSI_X3.4-1968
ANSI_X3.4-1986, ASCII, IBM367, ISO646-US, ISO_646.irv:1991,
US-ASCII, cp367, iso-ir-6 and us are aliases for this charset.
source: ECMA registry

ASMO_449
ISO_9036, arabic7 and iso-ir-89 are aliases for this charset.
source: ECMA registry

BS_4730
ISO646-GB, gb, iso-ir-4 and uk are aliases for this charset.
source: ECMA registry

BS_viewdata
iso-ir-47 is an alias for this charset. source: ECMA registry

CSA_Z243.4-1985-1
ISO646-CA, ca, csa7-1 and iso-ir-121 are aliases for this charset.
source: ECMA registry

CSA_Z243.4-1985-2
ISO646-CA2, csa7-2 and iso-ir-122 are aliases for this charset.
source: ECMA registry

CSA_Z243.4-1985-gr
iso-ir-123 is an alias for this charset. source: ECMA registry

CSN_369103
iso-ir-139 is an alias for this charset. source: ECMA registry

DEC-MCS
dec is an alias for this charset. VAX/VMS User’s Manual, Order
Number: AI-Y517A-TE, April 1986.

DIN_66003
ISO646-DE, de and iso-ir-21 are aliases for this charset. source:
ECMA registry

DS_2089
DS2089, ISO646-DK and dk are aliases for this charset. source:
Danish Standard, DS 2089, February 1974

EBCDIC-AT-DE
source: IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

EBCDIC-AT-DE-A
source: IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

EBCDIC-CA-FR
source: IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

EBCDIC-DK-NO
source: IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

recode 13 / 35

EBCDIC-DK-NO-A
source: IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

EBCDIC-ES
source: IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

EBCDIC-ES-A
source: IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

EBCDIC-ES-S
source: IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

EBCDIC-FI-SE
source: IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

EBCDIC-FI-SE-A
source: IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

EBCDIC-FR
source: IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

EBCDIC-IT
source: IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

EBCDIC-PT
source: IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

EBCDIC-UK
source: IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

EBCDIC-US
source: IBM 3270 Char Set Ref Ch 10, GA27-2837-9, April 1987

ECMA-cyrillic
iso-ir-111 is an alias for this charset. source: ECMA registry

ES
ISO646-ES and iso-ir-17 are aliases for this charset. source:
ECMA registry

ES2
ISO646-ES2 and iso-ir-85 are aliases for this charset. source:
ECMA registry

GB_1988-80
ISO646-CN, cn and iso-ir-57 are aliases for this charset. source:
ECMA registry

GOST_19768-74
ST_SEV_358-88 and iso-ir-153 are aliases for this charset.
source: ECMA registry

IBM037
cp037, ebcdic-cp-ca, ebcdic-cp-nl, ebcdic-cp-us and ebcdic-cp-wt
are aliases for this charset. source: IBM NLS RM Vol2
SE09-8002-01, March 1990

recode 14 / 35

IBM038
EBCDIC-INT and cp038 are aliases for this charset. source: IBM
3174 Character Set Ref, GA27-3831-02, March 1990

IBM1026
CP1026 is an alias for this charset. source: IBM NLS RM Vol2
SE09-8002-01, March 1990

IBM273
CP273 is an alias for this charset. source: IBM NLS RM Vol2
SE09-8002-01, March 1990

IBM274
CP274 and EBCDIC-BE are aliases for this charset. source: IBM
3174 Character Set Ref, GA27-3831-02, March 1990

IBM275
EBCDIC-BR and cp275 are aliases for this charset. source: IBM NLS
RM Vol2 SE09-8002-01, March 1990

IBM277
EBCDIC-CP-DK and EBCDIC-CP-NO are aliases for this charset.
source: IBM NLS RM Vol2 SE09-8002-01, March 1990

IBM278
CP278, ebcdic-cp-fi and ebcdic-cp-se are aliases for this charset.
source: IBM NLS RM Vol2 SE09-8002-01, March 1990

IBM280
CP280 and ebcdic-cp-it are aliases for this charset. source: IBM
NLS RM Vol2 SE09-8002-01, March 1990

IBM281
EBCDIC-JP-E and cp281 are aliases for this charset. source: IBM
3174 Character Set Ref, GA27-3831-02, March 1990

IBM284
CP284 and ebcdic-cp-es are aliases for this charset. source: IBM
NLS RM Vol2 SE09-8002-01, March 1990

IBM285
CP285 and ebcdic-cp-gb are aliases for this charset. source: IBM
NLS RM Vol2 SE09-8002-01, March 1990

IBM290
EBCDIC-JP-kana and cp290 are aliases for this charset. source:
IBM 3174 Character Set Ref, GA27-3831-02, March 1990

IBM297
cp297 and ebcdic-cp-fr are aliases for this charset. source: IBM
NLS RM Vol2 SE09-8002-01, March 1990

IBM420
cp420 and ebcdic-cp-ar1 are aliases for this charset. source: IBM
NLS RM Vol2 SE09-8002-01, March 1990 IBM NLS RM p 11-11

IBM423

recode 15 / 35

cp423 and ebcdic-cp-gr are aliases for this charset. source: IBM
NLS RM Vol2 SE09-8002-01, March 1990

IBM424
cp424 and ebcdic-cp-he are aliases for this charset. source: IBM
NLS RM Vol2 SE09-8002-01, March 1990

IBM437
437 and cp437 are aliases for this charset. source: IBM NLS RM
Vol2 SE09-8002-01, March 1990

IBM500
CP500, ebcdic-cp-be and ebcdic-cp-ch are aliases for this charset.
source: IBM NLS RM Vol2 SE09-8002-01, March 1990

IBM850
850 and cp850 are aliases for this charset. source: IBM NLS RM
Vol2 SE09-8002-01, March 1990

IBM851
851 and cp851 are aliases for this charset. source: IBM NLS RM
Vol2 SE09-8002-01, March 1990

IBM852
852 and cp852 are aliases for this charset. source: IBM NLS RM
Vol2 SE09-8002-01, March 1990

IBM855
855 and cp855 are aliases for this charset. source: IBM NLS RM
Vol2 SE09-8002-01, March 1990

IBM857
857 and cp857 are aliases for this charset. source: IBM NLS RM
Vol2 SE09-8002-01, March 1990

IBM860
860 and cp860 are aliases for this charset. source: IBM NLS RM
Vol2 SE09-8002-01, March 1990

IBM861
861, cp-is and cp861 are aliases for this charset. source: IBM
NLS RM Vol2 SE09-8002-01, March 1990

IBM862
862 and cp862 are aliases for this charset. source: IBM NLS RM
Vol2 SE09-8002-01, March 1990

IBM863
863 and cp863 are aliases for this charset. source: IBM Keyboard
layouts and code pages, PN 07G4586 June 1991

IBM864
cp864 is an alias for this charset. source: IBM Keyboard layouts
and code pages, PN 07G4586 June 1991

IBM865
865 and cp865 are aliases for this charset. source: IBM DOS 3.3

recode 16 / 35

Ref (Abridged), 94X9575 (Feb 1987)

IBM868
CP868 and cp-ar are aliases for this charset. source: IBM NLS RM
Vol2 SE09-8002-01, March 1990

IBM869
869, cp-gr and cp869 are aliases for this charset. source: IBM
Keyboard layouts and code pages, PN 07G4586 June 1991

IBM870
CP870, ebcdic-cp-roece and ebcdic-cp-yu are aliases for this
charset. source: IBM NLS RM Vol2 SE09-8002-01, March 1990

IBM871
CP871 and ebcdic-cp-is are aliases for this charset. source: IBM
NLS RM Vol2 SE09-8002-01, March 1990

IBM880
EBCDIC-Cyrillic and cp880 are aliases for this charset. source:
IBM NLS RM Vol2 SE09-8002-01, March 1990

IBM891
cp891 is an alias for this charset. source: IBM NLS RM Vol2
SE09-8002-01, March 1990

IBM903
cp903 is an alias for this charset. source: IBM NLS RM Vol2
SE09-8002-01, March 1990

IBM904
904 and cp904 are aliases for this charset. source: IBM NLS RM
Vol2 SE09-8002-01, March 1990

IBM905
CP905 and ebcdic-cp-tr are aliases for this charset. source: IBM
3174 Character Set Ref, GA27-3831-02, March 1990

IBM918
CP918 and ebcdic-cp-ar2 are aliases for this charset. source: IBM
NLS RM Vol2 SE09-8002-01, March 1990

IEC_P27-1
iso-ir-143 is an alias for this charset. source: ECMA registry

INIS
iso-ir-49 is an alias for this charset. source: ECMA registry

INIS-8
iso-ir-50 is an alias for this charset. source: ECMA registry

INIS-cyrillic
iso-ir-51 is an alias for this charset. source: ECMA registry

INVARIANT
ISO_10367-box

iso-ir-155 is an alias for this charset. source: ECMA registry

recode 17 / 35

ISO_2033-1983
e13b and iso-ir-98 are aliases for this charset. source: ECMA
registry

ISO_5427
iso-ir-37 is an alias for this charset. source: ECMA registry

ISO_5427:1981
iso-ir-54 is an alias for this charset. source: ECMA registry

ISO_5428:1980
iso-ir-55 is an alias for this charset. source: ECMA registry

ISO_646.basic:1983
ref is an alias for this charset. source: ECMA registry

ISO_646.irv:1983
irv and iso-ir-2 are aliases for this charset. source: ECMA
registry

ISO_6937-2-25
iso-ir-152 is an alias for this charset. source: ECMA registry

ISO_8859-1:1987
CP819, IBM819, ISO-8859-1, ISO_8859-1, iso-ir-100, l1 and latin1
are aliases for this charset. source: ECMA registry

ISO_8859-2:1987
ISO-8859-2, ISO_8859-2, iso-ir-101, l2 and latin2 are aliases for
this charset. source: ECMA registry

ISO_8859-3:1988
ISO-8859-3, ISO_8859-3, iso-ir-109, l3 and latin3 are aliases for
this charset. source: ECMA registry

ISO_8859-4:1988
ISO-8859-4, ISO_8859-4, iso-ir-110, l4 and latin4 are aliases for
this charset. source: ECMA registry

ISO_8859-5:1988
ISO-8859-5, ISO_8859-5, cyrillic and iso-ir-144 are aliases for
this charset. source: ECMA registry

ISO_8859-6:1987
ASMO-708, ECMA-114, ISO-8859-6, ISO_8859-6, arabic and iso-ir-127
are aliases for this charset. source: ECMA registry

ISO_8859-7:1987
ECMA-118, ELOT_928, ISO-8859-7, ISO_8859-7, greek, greek8 and
iso-ir-126 are aliases for this charset. source: ECMA registry

ISO_8859-8:1988
ISO-8859-8, ISO_8859-8, hebrew and iso-ir-138 are aliases for this
charset. source: ECMA registry

ISO_8859-9:1989

recode 18 / 35

ISO-8859-9, ISO_8859-9, iso-ir-148, l5 and latin5 are aliases for
this charset. source: ECMA registry

ISO_8859-supp
iso-ir-154 and latin1-2-5 are aliases for this charset. source:
ECMA registry

IT
ISO646-IT and iso-ir-15 are aliases for this charset. source:
ECMA registry

JIS_C6220-1969-jp
JIS_C6220-1969, iso-ir-13, katakana and x0201-7 are aliases for
this charset. source: ECMA registry

JIS_C6220-1969-ro
ISO646-JP, iso-ir-14 and jp are aliases for this charset. source:
ECMA registry

JIS_C6229-1984-a
jp-ocr-a is an alias for this charset. source: ECMA registry

JIS_C6229-1984-b
ISO646-JP-OCR-B and jp-ocr-b are aliases for this charset.
source: ECMA registry

JIS_C6229-1984-b-add
iso-ir-93 and jp-ocr-b-add are aliases for this charset. source:
ECMA registry

JIS_C6229-1984-hand
iso-ir-94 and jp-ocr-hand are aliases for this charset. source:
ECMA registry

JIS_C6229-1984-hand-add
iso-ir-95 and jp-ocr-hand-add are aliases for this charset.
source: ECMA registry

JIS_C6229-1984-kana
iso-ir-96 is an alias for this charset. source: ECMA registry

JIS_X0201
X0201 is an alias for this charset.

JUS_I.B1.002
ISO646-YU, iso-ir-141, js and yu are aliases for this charset.
source: ECMA registry

JUS_I.B1.003-mac
iso-ir-147 and macedonian are aliases for this charset. source:
ECMA registry

JUS_I.B1.003-serb
iso-ir-146 and serbian are aliases for this charset. source: ECMA
registry

KSC5636

recode 19 / 35

ISO646-KR is an alias for this charset.

Latin-greek-1
iso-ir-27 is an alias for this charset. source: ECMA registry

MSZ_7795.3
ISO646-HU, hu and iso-ir-86 are aliases for this charset. source:
ECMA registry

NATS-DANO
iso-ir-9-1 is an alias for this charset. source: ECMA registry

NATS-DANO-ADD
iso-ir-9-2 is an alias for this charset. source: ECMA registry

NATS-SEFI
iso-ir-8-1 is an alias for this charset. source: ECMA registry

NATS-SEFI-ADD
iso-ir-8-2 is an alias for this charset. source: ECMA registry

NC_NC00-10:81
ISO646-CU, cuba and iso-ir-151 are aliases for this charset.
source: ECMA registry

NF_Z_62-010
ISO646-FR, fr and iso-ir-69 are aliases for this charset. source:
ECMA registry

NF_Z_62-010_(1973)
ISO646-FR1 and iso-ir-25 are aliases for this charset. source:
ECMA registry

NS_4551-1
ISO646-NO, iso-ir-60 and no are aliases for this charset. source:
ECMA registry

NS_4551-2
ISO646-NO2, iso-ir-61 and no2 are aliases for this charset.
source: ECMA registry

PT
ISO646-PT and iso-ir-16 are aliases for this charset. source:
ECMA registry

PT2
ISO646-PT2 and iso-ir-84 are aliases for this charset. source:
ECMA registry

SEN_850200_B
FI, ISO646-FI, ISO646-SE, iso-ir-10 and se are aliases for this
charset. source: ECMA registry

SEN_850200_C
ISO646-SE2, iso-ir-11 and se2 are aliases for this charset.
source: ECMA registry

recode 20 / 35

T.61-7bit
iso-ir-102 is an alias for this charset. source: ECMA registry

dk-us
greek-ccitt

iso-ir-150 is an alias for this charset. source: ECMA registry

greek7
iso-ir-88 is an alias for this charset. source: ECMA registry

greek7-old
iso-ir-18 is an alias for this charset. source: ECMA registry

hp-roman8
r8 and roman8 are aliases for this charset. source: LaserJet IIP
Printer User’s Manual, HP part no 33471-90901, Hewlet-Packard,
June 1989.

latin-greek
iso-ir-19 is an alias for this charset. source: ECMA registry

latin-lap
iso-ir-158 and lap are aliases for this charset. source: ECMA
registry

latin6
iso-ir-157 and l6 are aliases for this charset. source: ECMA
registry

macintosh
mac is an alias for this charset. source: The Unicode Standard
ver1.0, ISBN 0-201-56788-1, Oct 1991

us-dk
for compatibility with ASCII

1.7 recode.guide/ISO charsets

Charsets based on ASCII

ascii
Usual ASCII

ISO 8859-1 charset
ASCII extended by Latin Alphabets

ascii-bs
ASCII 7-bits, BS to overstrike

flat
ASCII without diacritics nor underline

recode 21 / 35

1.8 recode.guide/ascii

Usual ASCII
===========

This charset is available in recode under the name ascii. In fact,
it’s true name is ANSI_X3.4-1968 as per RFC 1345, accepted aliases
being ANSI_X3.4-1986, ASCII, IBM367, ISO646-US, ISO_646.irv:1991,
US-ASCII, cp367, iso-ir-6 and us. The shortest way of specifying it in
recode is us.

This documentation used to include ASCII tables. They have been
removed since recode can now recreate these (and a lot of others)
easily:

recode -lf ascii for commented ASCII
recode -ld ascii for concise decimal table
recode -lo ascii for concise octal table
recode -lh ascii for concise hexadecimal table

1.9 recode.guide/ISO 8859-1 charset

ASCII extended by Latin Alphabets
=================================

This charset is available in recode under the name latin1. In fact,
it’s true name is ISO_8859-1:1987 as per RFC 1345, accepted aliases
being CP819, IBM819, ISO-8859-1, ISO_8859-1, iso-ir-100, l1 and latin1.
The shortest way of specifying it in recode is l1.

This charset corresponds to the ISO Latin Alphabet 1. It is an
eight-bit code which coincides with ASCII for the lower half.

This documentation used to include Latin-1 tables. They have been
removed since recode can now recreate these (and a lot of others)
easily:

recode -lf latin1 for commented ISO Latin-1
recode -ld latin1 for concise decimal table
recode -lo latin1 for concise octal table
recode -lh latin1 for concise hexadecimal table

The following from lasko@video.dec.com (Tim Lasko), with no date.

ISO Latin-1, or more completely ISO Latin Alphabet No 1, is now an
international standard as of February 1987 (IS 8859, Part 1). For
those American USEnet’rs that care, the 8-bit ASCII standard,
which is essentially the same code, is going through the final

recode 22 / 35

administrative processes prior to publication.

ISO Latin-1 (IS 8859/1) is actually one of an entire family of
eight-bit one-byte character sets, all having ASCII on the left
hand side, and with varying repertoires on the right hand side:

Pt 1. Latin Alphabet No 1 (caters to Western Europe - now approved)
Pt 2. Latin Alphabet No 2 (caters to Eastern Europe - now approved)
Pt 3. Latin Alphabet No 3 (caters to SE Europe + others - in draft ballot)
Pt 4. Latin Alphabet No 4 (caters to Northern Europe - in draft ballot)
Pt 5. Latin-Cyrillic alphabet (right half all Cyrillic - processing

currently suspended pending USSR input)
Pt 6. Latin-Arabic alphabet (right half all Arabic - now approved)
Pt 7. Latin-Greek alphabet (right half Greek + symbols - in draft ←↩

ballot)
Pt 8. Latin-Hebrew alphabet (right half Hebrew + symbols - proposed)

1.10 recode.guide/ascii-bs

ASCII 7-bits, BS to overstrike
==============================

This charset is available in recode under the name ascii-bs.

The file is straight ASCII, seven bits only. According to the
definition of ASCII: diacritics are applied by a sequence of three
characters: the letter, one BS, the diacritic mark. We deviate
slightly from this by exchanging the diacritic mark and the letter so,
on a screen device, the diacritic will disappear and let the letter
alone. At recognition time, both methods are acceptable.

The French quotes are coded by the sequences: < BS " or " BS < for
the opening quote and > BS " or " BS > for the closing quote. This
artifical convention was inherited in straight ascii-bs from habits
around bangbang entry, and is not well known. But we decided to stick
to it so that ascii-bs charset will not loose French quotes.

The ascii-bs charset is independant of ascii, and different. The
following examples demonstrate this, knowing at advance that !2 is the
bangbang way of representing an e with an acute accent. Compare:

% echo \!2 | recode -v bang:ascii | od -bc
bangbang -> iso-8859-1-1987 -> rfc1345 -> ansi-x3.4-1968 (many to one)
bangbang -> iso-8859-1-1987 -> ansi-x3.4-1968 (many to one)
0000000 351 012
351 \n

0000002

with:

% echo \!2 | recode -v bang:ascii-bs | od -bc
bangbang -> iso-8859-1-1987 -> ascii-bs (many to many)
0000000 047 010 145 012

’ \b e \n

recode 23 / 35

0000004

In the first case, the e with an acute accent is merely transmitted
by the latin1:ascii mapping, not having a special recoding rule for it.
In the latin1:ascii-bs case, the acute accent is applied over the e
with a backspace: diacriticized characters have special rules. For the
ascii-bs charset, reversibility is still possible, but there might be
difficult cases.

1.11 recode.guide/flat

ASCII without diacritics nor underline
======================================

This charset is available in recode under the name flat.

This code is ASCII expunged of all diacritics and underlines, as
long as they are applied using three character sequences, with BS in the
middle. Also, despite slightly unrelated, each control character is
represented by a sequence of two or three graphic characters. The
newline character, however, keeps its functionnality and is not
represented.

Note that charset flat is a terminal charset. We can convert to
flat, but not from it.

1.12 recode.guide/IBM charsets

Charsets based on IBM

ebcdic
EBCDIC codes

ibmpc
IBM’s PC code

iconqnx
Unisys’ ICON code

1.13 recode.guide/ebcdic

recode 24 / 35

EBCDIC code
===========

This charset is the IBM’s external binary coded decimal for
interchange coding. This is an eight bits code. The following three
variants were implemented in GNU recode independantly of RFC 1345:

ebcdic
This charset represents the way Control Data Corporation relates
EBCDIC to 8-bits ASCII. GNU dd ebcdic conversion is identical.

ebcdic-ccc
This charset represents the way Concurrent Computer Corporation
(formerly Perkin Elmer) relates EBCDIC to 8-bits ASCII.

ebcdic-ibm
This charset is almost identical to the GNU dd ibm conversion.
For the GNU dd ibm table, recode said:

Codes 91 and 213 both recode to 173
Codes 93 and 229 both recode to 189
No character recodes to 74
No character recodes to 106

So I arbitrarily chose to recode 213 by 74 and 229 by 106. This
makes the ebcdic-ibm recoding reversible, but this is not
necessarily the best correction. In any case, I believe GNU dd
should be corrected, and preferrably, GNU dd and GNU recode should
agree on the correction. So, this table may change once again.

RFC 1345 brings in recode 15 other EBCDIC charsets, and 21 other
charsets having EBCDIC in at least one of their alias names. You can
get a list of all these by executing:

recode -l | grep ebcdic

1.14 recode.guide/ibmpc

IBM’s PC code
=============

This charset is available in recode under the name ibmpc. There are
a few discrepancies between this charset and the very similar RFC 1345
charset ibm437, which have not been analyzed yet, so the charsets are
being kept separate for now. This might change in the future.

The file was obtained or is aimed towards a PC microcomputer from
IBM or any compatible. This is an eight-bit code.

recode 25 / 35

1.15 recode.guide/iconqnx

Unisys’ ICON code
=================

This charset is available in recode under the name iconqnx.

The file is using Unisys’ ICON way to represent diacritics with code
25 escape sequences. This is a seven-bit code, even if eight-bit codes
can flow through as part of IBM-PC charset.

1.16 recode.guide/CDC charsets

Charsets based on CDC

Display Code
Control Data’s Display Code

cdcnos
ASCII 6/12 from NOS

bangbang
ASCII "bang bang"

1.17 recode.guide/Display Code

Control Data’s Display Code
===========================

This code is not available in recode, but repeated here for
reference. This is a 6-bit code used on CDC mainframes.

Octal display code to graphic Octal display code to octal ASCII

00 : 20 P 40 5 60 # 00 072 20 120 40 065 60 043
01 A 21 Q 41 6 61 [01 101 21 121 41 066 61 133
02 B 22 R 42 7 62] 02 102 22 122 42 067 62 135
03 C 23 S 43 8 63 % 03 103 23 123 43 070 63 045
04 D 24 T 44 9 64 " 04 104 24 124 44 071 64 042
05 E 25 U 45 + 65 _ 05 105 25 125 45 053 65 137
06 F 26 V 46 - 66 ! 06 106 26 126 46 055 66 041
07 G 27 W 47 * 67 & 07 107 27 127 47 052 67 046
10 H 30 X 50 / 70 ’ 10 110 30 130 50 057 70 047
11 I 31 Y 51 (71 ? 11 111 31 131 51 050 71 077
12 J 32 Z 52) 72 < 12 112 32 132 52 051 72 074
13 K 33 0 53 $ 73 > 13 113 33 060 53 044 73 076

recode 26 / 35

14 L 34 1 54 = 74 @ 14 114 34 061 54 075 74 100
15 M 35 2 55 75 \ 15 115 35 062 55 040 75 134
16 N 36 3 56 , 76 ^ 16 116 36 063 56 054 76 136
17 O 37 4 57 . 77 ; 17 117 37 064 57 056 77 073

1.18 recode.guide/cdcnos

ASCII 6/12 from NOS
===================

This charset is available in recode under the name cdcnos.

This is one of the charset in use on CDC Cyber NOS systems to
represent ASCII, sometimes named NOS 6/12 code for coding ASCII. This
code is also known as caret ASCII. It is based on a six bits character
set in which small letters and control characters are coded using a ^
escape and, sometimes, a @ escape.

The routines given here presume that the six bits code is already
expressed in ASCII by the communication channel, with embedded ASCII ^
and @ escapes.

Here is a table showing which characters are being used to encode
each ASCII character.

000 ^5 020 ^# 040 060 0 100 @A 120 P 140 @G 160 ^P
001 ^6 021 ^[041 ! 061 1 101 A 121 Q 141 ^A 161 ^Q
002 ^7 022 ^] 042 " 062 2 102 B 122 R 142 ^B 162 ^R
003 ^8 023 ^% 043 # 063 3 103 C 123 S 143 ^C 163 ^S
004 ^9 024 ^" 044 $ 064 4 104 D 124 T 144 ^D 164 ^T
005 ^+ 025 ^_ 045 % 065 5 105 E 125 U 145 ^E 165 ^U
006 ^- 026 ^! 046 & 066 6 106 F 126 V 146 ^F 166 ^V
007 ^* 027 ^& 047 ’ 067 7 107 G 127 W 147 ^G 167 ^W
010 ^/ 030 ^’ 050 (070 8 110 H 130 X 150 ^H 170 ^X
011 ^(031 ^? 051) 071 9 111 I 131 Y 151 ^I 171 ^Y
012 ^) 032 ^< 052 * 072 @D 112 J 132 Z 152 ^J 172 ^Z
013 ^$ 033 ^> 053 + 073 ; 113 K 133 [153 ^K 173 ^0
014 ^= 034 ^@ 054 , 074 < 114 L 134 \ 154 ^L 174 ^1
015 ^ 035 ^\ 055 - 075 = 115 M 135] 155 ^M 175 ^2
016 ^, 036 ^^ 056 . 076 > 116 N 136 @B 156 ^N 176 ^3
017 ^. 037 ^; 057 / 077 ? 117 O 137 _ 157 ^O 177 ^4

1.19 recode.guide/bangbang

ASCII "bang bang"
=================

This charset is available in recode under the name bangbang.

This is the local code in use on Cybers at Universite de Montreal,

recode 27 / 35

which grave and serious people there prefer to name ASCII code display.
This code is also known as Bang-bang. It is based on a six bits
character set in which capitals, French diacritics and a few others are
coded using an ! escape followed by a single character, and control
characters using a double ! escape followed by a single character.

The routines given here presume that the six bits code is already
expressed in ASCII by the communication channel, with embedded ASCII !
escapes.

Here is a table showing which characters are being used to encode
each ASCII character.

000 !!@ 020 !!P 040 060 0 100 @ 120 !P 140 !@ 160 P
001 !!A 021 !!Q 041 !" 061 1 101 !A 121 !Q 141 A 161 Q
002 !!B 022 !!R 042 " 062 2 102 !B 122 !R 142 B 162 R
003 !!C 023 !!S 043 # 063 3 103 !C 123 !S 143 C 163 S
004 !!D 024 !!T 044 $ 064 4 104 !D 124 !T 144 D 164 T
005 !!E 025 !!U 045 % 065 5 105 !E 125 !U 145 E 165 U
006 !!F 026 !!V 046 & 066 6 106 !F 126 !V 146 F 166 V
007 !!G 027 !!W 047 ’ 067 7 107 !G 127 !W 147 G 167 W
010 !!H 030 !!X 050 (070 8 110 !H 130 !X 150 H 170 X
011 !!I 031 !!Y 051) 071 9 111 !I 131 !Y 151 I 171 Y
012 !!J 032 !!Z 052 * 072 : 112 !J 132 !Z 152 J 172 Z
013 !!K 033 !![053 + 073 ; 113 !K 133 [153 K 173 ![
014 !!L 034 !!\ 054 , 074 < 114 !L 134 \ 154 L 174 !\
015 !!M 035 !!] 055 - 075 = 115 !M 135] 155 M 175 !]
016 !!N 036 !!^ 056 . 076 > 116 !N 136 ^ 156 N 176 !^
017 !!O 037 !!_ 057 / 077 ? 117 !O 137 _ 157 O 177 !_

1.20 recode.guide/Micro charsets

Non-IBM micro-computer charsets

applemac
Apple’s Macintosh code

atarist
Atari ST code

nextstep
NeXT international code

1.21 recode.guide/applemac

recode 28 / 35

Apple’s Macintosh code
======================

This charset is available in recode under the name applemac. There
are a few discrepancies between this charset and the very similar RFC
1345 charset macintosh, which have not been analyzed yet, so the
charsets are being kept separate for now. This might change in the
future.

The file has been obtained or is aimed to a Macintosh micro-computer
from Apple. This is an eight bit code. The file is the data fork only.

1.22 recode.guide/atarist

Atari ST code
=============

This charset is available in recode under the name atarist.

This is the character set used on the Atari ST/TT/Falcon. This is
similar to ibmpc, but differs in some details (includes some more
accented characters, the graphic characters are mostly replaced by
hebrew characters, and there is a true german sharp s different from
greek beta).

About the end-of-line conversions: the canonical end-of-line on the
Atari is \r\n, but unlike ibmpc, the OS makes no difference between
text and binary input/output; it is up to the application how to
interpret the data. In fact, most of the libraries that come with
compilers can grok both \r\n and \n as end of lines. Many of the users
who also have access to Unix systems prefer \n to ease porting Unix
utilities. So, for easing reversibility, recode tries to let \r
undisturbed through recodings.

1.23 recode.guide/nextstep

NeXT international code
=======================

This charset is available in recode under the name NeXTSTEP.

The NeXTSTEP encoding is an extension to the ISO Latin-1 ASCII
encoding used by NeXT. It is identical to Latin-1 for the positions
0-127. In the position 128-255, NeXT added some chars and shuffled
them around a little bit (for some unknown reason).

recode 29 / 35

1.24 recode.guide/Other charsets

Some other charsets

Even if these charsets were originally added to recode for handling
texts written in French, they find other uses. We did use them lot for
writing French diacriticized texts in the past, so recode knows how to
handle these particularily well for French texts.

latex
ASCII with LaTeX codes

texte
ASCII with easy French conventions

1.25 recode.guide/latex

ASCII with LaTeX codes
======================

This charset is available in recode under the name latex and has
ltex as an alias. It is used for ASCII files coded to be read by
LaTeX or, in certain cases, by TeX.

Whenever you recode from another charset to latex, beware that all
occurrences of backslashes (\) are usually translated into the string
\backslash{}. However, in practice, people often use backslashes in
the other charset for introducing TeX commands, compromising it: it is
not pure TeX, nor it is pure other charset. This translation of
backslashes into \backslash{} can be rather inconvenient, it may be
inhibited through the command option -d.

1.26 recode.guide/texte

ASCII with easy French conventions
==================================

This charset is available in recode under the name texte and has
txte for an alias.

This charset is identical to ascii-bs, save for French diacritics
which are noted using a slightly different convention.

These conventions are used in texte and latexte charsets, which are
seven bits codes. At text entry time, these conventions provide a
little speed up. At read time, they slightly improve the readability.

recode 30 / 35

Of course, it would better to have a specialized keyboard to make
direct eight bits entries and fonts for immediately displaying eight
bit ISO Latin-1 characters. But not everybody is so fortunate. In
several mailing environment, the eight bit is often willfully destroyed
(an horrible Crime that most people do not care to straighten up).

Easy French has been in use in France for a while. I only slightly
adapted it (the diaeresis option) to make it more comfortable to several
usages in Qu’ebec originating from Universit’e de Montr’eal. In fact,
the main problem for me was not to necessarily to invent Easy French,
but to recognize the "best" convention to use, (best is not being
defined, here) and to try to solve the main pithfalls associated with
the selected convention.

Diacritics
Diacritics

Ending diaeresis
List of words ending with diaeresis

1.27 recode.guide/Diacritics

Diacritics

French quotes (sometimes called "angle quotes") are noted the same
way English quotes are noted in TeX, id est by " and ".

No effort has been put to preserve Latin ligatures (ae, oe) which
are representable in several other charsets. So, these ligatures may
be lost through Easy French conventions.

This is almost the French convention for simplified diacritics entry:

e’
Acute accent

e‘
Grave accent

e^
Circumflex accent

e"
Diaeresis

c,
Cedilla

In some countries, : is used instead of " to mark diaeresis. recode
support one convention on a single call, depending on the -c option of

recode 31 / 35

the recode command.

The convention is prone to loosing information, because the diacritic
meaning overloads some characters that already have other uses. To
alleviate this, some knowledge of the French language is insufflated
into the recognition routines. So, the following subtleties are
systematically obeyed by the various recognizers.

* A single quote which follows a e does not necessarily means an
acute accent if it is followed by a single other one. For example:

e’
will give an e with an acute accent.

e"
will give a simple e, with a closing quotation mark.

e"’
will give an e with an acute accent, followed by a closing
quotation mark.

There is a problem induced by this convention if there are English
citations with a French text. In sentences like:

There’s a meeting at Archie’s restaurant.

the single quotes will be mistaken twice for acute accents. So
English contractions and suffix possessives could be mangled.

* A double quote or colon, depending on -c option, which follows a
vowel is interpreted as diaeresis only if it is followd by another
letter. But there are in French several words that end with a
diaeresis, the program also recognizes them. See

Ending diaeresis
,

for a study of all the problematic cases.

* A comma which follows a c is interpreted as a cedilla only if it is
followd by one of the vowels a, o and u.

1.28 recode.guide/Ending diaeresis

List of words ending with diaeresis

Here is a classification of all cases of a diaeresis at the end of a
French word:

* Words ending in "igue"

- Feminine words without a relative masculine:

besaigue" cigue"

recode 32 / 35

- Feminine words with a relative masculine: (1)

aigue" ambigue" contigue" exigue" subaigue" suraigue"

* Words not ending in "igue"

- Ended by "i": (2)

ai" congai" goi" hai"kai" inoui" sai" samurai" thai" tokai"

- Ended by "e":

canoe"

- Ended by "u": (3)

Esau"

Notes:

1. There are supposed to be seven words in this case. So, one is
missing.

2. Look at the following sentence:

"Ai"e! Voici le proble‘me que j’ai"

or, using the -c option:

Ai:e! Voici le proble‘me que j’ai:

There is an ambiguity between an ai", the small animal, and the
indicative future of avoir (first person singular), when followed
by what could be a diaeresis mark. Hopefully, the case is solved
by the fact that an apostrophe always precedes the verb and almost
never the animal.

3. I did not pay attention to proper nouns, but this one showed up as
being fairly evident.

Just to complete this topic, note that it would be wrong to make a
rule for all words ending in "igue" as needing a diaerisis. Here are
counter-examples:

becfigue be‘sigue bigue bordigue bourdigue brigue contre-digue
digue d’intrigue fatigue figue garrigue gigue igue intrigue
ligue prodigue sarigue zigue

1.29 recode.guide/Internals

Internal aspects

recode 33 / 35

Suppose that four elementary steps are selected at path optimization
time. Then recode will split itself into four different tasks
interconnected with pipes, logically equivalent to:

step1 <input | step2 | step3 | step4 >output

Main flow
Overall organization

New charsets
Adding new charsets

1.30 recode.guide/Main flow

Overall organization
====================

The main driver constructs, while initializing all conversion
modules, a table giving all the conversion routines available (single
steps) and for each, the starting charset and the ending charset. If we
consider these charsets as being the nodes of a directed graph, each
single step may be considered as oriented arc from one node to the
other. A cost is attributed to each arc: for example, a high penality
is given to single steps which are prone to loosing characters, a low
penality is given to those which need studying more than one input
character for producing an output character, etc.

Given a starting code and a goal code, recode computes the most
economical route through the elementary recodings, that is, the best
sequence of conversions that will transform the input charset into the
final charset. To speed up execution, recode looks for subsequences of
conversions which are simple enough to be merged, it then dynamically
creates new single steps, of course, use them.

A double step is a sequence of two single steps, the output of the
first being the special charset rfc1345 (which is not directly
available to the user), the input of the second single step being also
rfc1345. A special machinery dynamically produces efficient,
reversible, mergeable single steps out of these double steps.

The main part of recode is written in C, as are most single steps.
A few single steps need to recognize sequences of multiple characters,
they are often better written in flex.

1.31 recode.guide/New charsets

recode 34 / 35

Adding new charsets
===================

It is easy for a programmer to add a new charset to recode. All it
requires is making a few functions kept in a single .c file, adjusting
Makefile.in, and remaking recode.

One of the function should convert from any previous charset to the
new one. Any previous charset will do, but try to select it so you
will not loose too much information while converting. The other
function should convert from the new charset to any older one. You do
not have to select the same old charset than what you selected for the
previous routine. Once again, select any charset for which you will
not loose too much information while converting.

If, for any of these two functions, you have to read multiple bytes
of the old charset before recognizing the character to produce, you
might prefer programming it in flex in a separate .l file. Prototype
your C or flex files after one of those which exist already, so to keep
the sources uniform. Besides, at make time, all .l files are
automatically merged into a single big one by the script mergelex.awk,
which requires sources to follow some rules. Mimetism is a simple
approach which relieves me of explaining all these rules!

Each of your source files should have its own initialization
function, named module_charset, which is meant to be executed quickly,
once, prior to any recoding. It should declare the name of your
charsets and the single steps (or elementary recodings) you provide, by
calling declare_step one or more times. Besides the charset names,
declare_step expects a description of the recoding quality (see
recode.h) and two functions you also provide.

The first such function has the purpose of allocating structures,
preconditionning conversion tables, etc. It is also the usual way of
further modifying the STEP structure. This function is executed only
if and when the single step is retained in an actual recoding sequence.
If you do not need such delayed initialization, merely use NULL for
the function argument.

The second function executes the elementary recoding on a whole file.
There are a few cases when you can spare writing this function:

* Some single steps do nothing else than a pure copy of the input
onto the output, in this case, you can use the predefined function
file_one_to_one, but have a delayed initialization for presetting
the field one_to_one to the predefined value one_to_same.

* Some single steps are driven by a table which recodes one
character into another; if the recoding does nothing else, you can
use the predefined function file_one_to_one, but have a delayed
initialization for presetting the STEP field one_to_one with your
table.

* Some single steps are driven by a table which recodes one
character into a string; if the recoding does nothing else, you
can use the predefined function file_one_to_many, but have a

recode 35 / 35

delayed initialization for presetting the STEP field one_to_many
with your table.

If you have a recoding table handy in a suitable format but do not
use one of the predefined recoding functions, it is still a good idea
to use a delayed initialization to save it anyway, because recode option
-h will take advantage of this information when available.

Finally, edit Makefile.in to add the source file name of your
routines to the C_STEPS or L_STEPS macro definition, depending on the
fact your routines is written in C or in flex. For C files only, also
modify the STEPOBJS macro definition.

	recode
	recode.guide
	recode.guide/Introduction
	recode.guide/Overview
	recode.guide/Contributing
	recode.guide/Invoking recode
	recode.guide/RFC 1345 charsets
	recode.guide/ISO charsets
	recode.guide/ascii
	recode.guide/ISO 8859-1 charset
	recode.guide/ascii-bs
	recode.guide/flat
	recode.guide/IBM charsets
	recode.guide/ebcdic
	recode.guide/ibmpc
	recode.guide/iconqnx
	recode.guide/CDC charsets
	recode.guide/Display Code
	recode.guide/cdcnos
	recode.guide/bangbang
	recode.guide/Micro charsets
	recode.guide/applemac
	recode.guide/atarist
	recode.guide/nextstep
	recode.guide/Other charsets
	recode.guide/latex
	recode.guide/texte
	recode.guide/Diacritics
	recode.guide/Ending diaeresis
	recode.guide/Internals
	recode.guide/Main flow
	recode.guide/New charsets

